Consumer Preference for Sustainable Wine Attributes: A Conjoint Analysis

Kathy Kelley, Professor, Penn State
Jennifer Zelinskie, Former Graduate Student, Penn State
Michela Centinari, Assistant Professor, Penn State
Denise Gardner, Enology Extension Associate, Penn State
Ramu Govindasamy, Professor, Rutgers University
Jeff Hyde, Professor, Penn State
Brad Rickard, Associate Professor, Cornell University
Karl Storchmann, Clinical Professor, New York University

The project “Developing Wine Marketing Strategies for the Mid-Atlantic Region” was funded by a USDA Federal-State Marketing Improvement Program (Grant 11091317)
Issues impacting wine grape production in the Mid-Atlantic region

Botrytis cinerea (bunch rot or gray mold) thrives in humid environments and is exacerbated by rain and temperatures between 60 and 75°F (15.5 and 23.9°C) (Wilcox, 2007)
Herbicide use in the vineyard

Potential issues:

• Overuse, applying the wrong herbicide, 2,4-D* drift can damage leaves (insufficient or inefficient leaf area) (Centinari, 2015; Muza, 2015)

• Exposure of bare soil increase soil erosion, degradation, leaching and water runoff (Karl, 2015)

• The number of herbicide-resistant weeds continues to increase (Holt, 1992)

*2,4-dichlorophenoxyacetic acid
Will Mid-Atlantic wine consumers’ purchasing decisions change based on being informed that:

- Grapes are susceptible to bunch rot
- Fungicides are applied to control the disease
- Removing leaves reduces bunch rot threat and 2 fewer fungicide applications are needed
- Continued herbicide use to control weeds could lead to herbicides leaking into groundwater and cause soil erosion
- Cover crops may control weeds and reduce (or eliminate) herbicide use and improve soil health and reduce erosion
Will Mid-Atlantic wine consumers’ purchasing decisions change based on being informed that:

- Grapes are susceptible to bunch rot
- Fungicides are applied to control the disease
- Removing leaves reduces bunch rot threat and 2 fewer fungicide applications are needed
- Continued herbicide use to control weeds could lead to herbicides leaking into groundwater and cause soil erosion
- Cover crops may control weeds and reduce (or eliminate) herbicide use and improve soil health and reduce erosion

Both approaches are labor intensive and a vineyard would need to add $1.00 to the retail price (per bottle) to cover labor costs for each process. Thus, $2.00 would be added to the retail bottle price if both leaves are removed to control bunch rot and a cover crop is planted.
A 15-minute Internet survey was used to collect data, 28 to 30 March 2016

Screener criteria:
• 21 years of age or older
• Not a member of the wine industry
• Resided in New Jersey, New York, or Pennsylvania
• Drank and purchased wine at least once within the previous year

Participants and response rate:
• Pre-tested and administered to Survey Sampling International, LLC panelists
• 753 opened and attempted the survey and 604 qualified and completed the survey

• Participants who completed the survey received a $1.00 incentive
Survey respondents

• Female (59.1%)

• 20% with household incomes of: $25k to $49,999, $50k to $75,999, or $100k to $149,999

• Bachelor’s degree (35.1%) some college/technical school (32.3%)

• Participant and one other adult in the household drinks wine (56.5%)

• 31.5% were Gen X (age 36 to 51) and 31.3% were Millennials (age 21 to 35)

• 32.4% were super core wine consumers, 48.6% were marginal wine consumers
How will Mid-Atlantic wine consumers respond to the two “environmentally friendly” production practices knowing that the price of a 750 mL bottle of wine will need to be increased?
Conjoint Analysis attributes and levels

Bunch Rot Control
1. Grape leaves are removed
 - Two fewer fungicide applications
 - $1.00 added to the retail base price

2. Grape leaves are not removed
 - No reduction in fungicide application

Weed Control
1. Cover crop is planted
 - Herbicides are not applied
 - $1.00 added to the retail base price

2. No cover crop is planted
 - Herbicides are applied to control weeds

Retail Base Price
1. $12.00
2. $16.00
3. $22.00
4. $26.00
Conjoint Analysis attributes and levels

<table>
<thead>
<tr>
<th>Bunch Rot Control</th>
<th>Weed Control</th>
<th>Retail Base Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grape leaves are removed</td>
<td>1. Cover crop is planted</td>
<td>1. $12.00</td>
</tr>
<tr>
<td>1. Two fewer fungicide applications</td>
<td>2. Herbicides are not applied</td>
<td>2. $16.00</td>
</tr>
<tr>
<td>1. $1.00 added to the retail base price</td>
<td>2. $1.00 added to the retail base price</td>
<td>3. $22.00</td>
</tr>
<tr>
<td>2. Grape leaves are not removed</td>
<td>2. No cover crop is planted</td>
<td>4. $26.00</td>
</tr>
<tr>
<td>2. No reduction in fungicide application</td>
<td>2. Herbicides are applied to control weeds</td>
<td></td>
</tr>
</tbody>
</table>

If leaves are removed to control bunch rot **and** a cover crop is planted, the retail price for a $26.00 bottle would increase to $28.00.
Conjoint Analysis Orthogonal Array

Bunch Rot Control

1. Grape leaves are removed
 - Two fewer fungicide applications
 - $1.00 added to the retail base price

2. Grape leaves are not removed
 - No reduction in fungicide application

Weed Control

1. Cover crop is planted
 - Herbicides are not applied
 - $1.00 added to the retail base price

2. No cover crop is planted
 - Herbicides are applied to control weeds

Retail Base Price

1. $12.00
2. $16.00
3. $22.00
4. $26.00

Sixteen combinations were possible, but an orthogonal array resulted in 8 non-repeating combinations (and 2 holdout cases)
Regardless of varietal (e.g. Chardonnay, Cabernet Sauvignon, Merlot), how likely (1 = very unlikely to 7 = very likely) would you be to purchase a 750ml glass bottle of wine to serve to family and/or friends in your home?

- **Bunch Rot Control**
 - Grape leaves are not removed
 - No reduction in fungicide application

- **Weed Control**
 - Cover crop is planted
 - Herbicides are not applied
 - $1.00 added to the retail base price

- **Retail Base Price**
 - $22.00
Which attribute had the highest Average Importance?

- Bunch rot control: 20.76%\(^z\)
- Weed control: 21.49%
- Retail base price: 57.40%

\(^z\)A higher value indicates a greater importance; Pearson's R = 0.995; significance = 0.000
Levels within attributes that received positive utility ratings

• Removing leaves to control bunch rot with a $1.00 surcharge

• $12.00 and $16.00 retail base prices

Most preferred scenario:

Bunch Rot Control
• Grape leaves are removed
• Two fewer fungicide applications
• $1.00 added to the retail base price

Weed Control
• Cover crop is planted
• Herbicides are not applied
• $1.00 added to the retail base price

Retail Base Price/ Final Retail Price
$12.00/ $14.00

• Planting a cover crop to suppress weeds with a $1.00 surcharge
Conjoint Analysis segmentation variables

<table>
<thead>
<tr>
<th>Participants level of interest in purchasing wines based on:</th>
<th>Grapes were grown using minimal insecticides and herbicides</th>
<th>Cover crops used in the vineyard to control weeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all interested</td>
<td>5.00%</td>
<td>4.30%</td>
</tr>
<tr>
<td>Slightly and moderately interested</td>
<td>27.00%</td>
<td>44.00%</td>
</tr>
<tr>
<td>Very and extremely interested</td>
<td>68.00%</td>
<td>51.70%</td>
</tr>
</tbody>
</table>
Average Importance based on interest in purchasing wines made from grapes grown using minimal insecticides and herbicides

22.89% 19.89%
Not at all interested

60.23% 61.75%
Slightly and moderately interested

55.53%
Very and extremely interested

Bunch rot control Weed control Retail base price

*A higher value indicates a greater importance; Pearson’s R = 0.995; significance = 0.000
Average Importance based on interest in purchasing wines made from grapes grown using minimal insecticides and herbicides

Arrows show changes in Average Importance compared to the overall Conjoint Analysis

<table>
<thead>
<tr>
<th>Interest Level</th>
<th>Bunch rot control</th>
<th>Weed control</th>
<th>Retail base price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not at all interested</td>
<td>22.89%</td>
<td>16.88%</td>
<td></td>
</tr>
<tr>
<td>Slightly and moderately interested</td>
<td>19.89%</td>
<td>17.71%</td>
<td></td>
</tr>
<tr>
<td>Very and extremely interested</td>
<td>20.28%</td>
<td>23.39%</td>
<td></td>
</tr>
</tbody>
</table>

A higher value indicates a greater importance; Pearson’s R = 0.995; significance = 0.000
Average Importance based on interest in purchasing wines made from grapes grown in a vineyard with cover crops to control weeds

A higher value indicates a greater importance; Pearson’s R = 0.995; significance = 0.000
Average Importance based on interest in purchasing wines made from grapes grown in a vineyard with cover crops to control weeds.

Arrows show changes in Average Importance compared to the overall Conjoint Analysis.

A higher value indicates a greater importance; Pearson’s R = 0.995; significance = 0.000.
In conclusion:

• Conjoint Analysis revealed that price accounted for over half (57.40%) of the purchasing decision
 • two lowest retail base prices ($12.00 and $16.00) received positive utility ratings

• When segmented by interest in minimal use of insecticides/herbicides and use of a cover crop, average importance for price was still higher than the other attributes
 • Even for those very/extremely interested in these “environmentally friendly” practices

• As level of interest increased average importance for price decreased
Thank you! Grazie! Any questions?

Kathy Kelley
email: kathykelley@psu.edu

Penn State Wine & Grape U. Blog: