What’s in a Name?
Information, Heterogeneity, and Quality in a Theory of Nested Names

Jianyu Yua,
Zohra Bouamra-Mechemacheb,
Angelo Zagoc

a: Southwestern University of Finance and Economics (RIEM), China
b: Toulouse School of Economics (Gremaq, INRA), France
c: University of Verona, Italy

AAWE Bordeaux - June 23, 2016
Introduction

Different quality labeling strategies used in food markets:

- **Private brands**: usually for processed products; national or individual brands.

- **Collective labels**, such as EU’s Geographical Indications (PDO/PGI): mainly in Southern-Europe. France, Greece, Italy, Portugal and Spain represent 80% of total PDO/PGI value sales.

- But also, **nested names**: individual brands nested within collective labels. Common in many sectors, such as
 - Wine sector,
 - Cheese sector,
 - Regional specific products: fruit & vegetables, tea, coffee, cocoa, ...
Questions addressed in this paper

- Can we explain the existence of these different situations?
- What are firms best strategies? More basically,
 - Why joining a collective label?
 - Why would the high-quality H producers be willing to pool with low-quality L ones and suffer from negative spillovers?
- Moreover,
 - How are different labeling schemes chosen? Under what conditions?
 - Are some labeling schemes more “conflict-prone” or are some better to take into account divergent interests among heterogeneous producers?
- What are their implications for quality investments? What are their welfare implications?
Issues we are interested in explaining

1. The coexistence of different labels: individual brands, collective labels, nested names.
2. Controversies regarding quality choices in collective labels...
...NOT only in wines... or in Italy...

Les couteliers de Laguiole veulent une "indicator géographique" restreinte au village

06 Juin 2015, 09h51 | MAJ : 06 Juin 2015, 09h51

Les couteliers de Laguiole (Aveyron) se réjouissent qu'une "indication géographique" puisse bientôt valoriser l'industrie et demandent que cette IG "couteau de Laguiole" soit restreinte à leur village, dans un rayon de 20 km autour, présidé (http://actualites.leparisien.fr/president.html) de leur syndicat.
3. Within-label differentiation.
4. **Secession** (e.g., Super Tuscans and Bolgheri)...
Evidence from the literature

• On the demand side, **information matters**:
 • Labels convey quality signals and attract consumers’ WTP compared to no quality signal, and increase more the WTP for non-branded products (Bonnet & Simioni, 2001; Hassan & Monier, 2006).
 • PDOs mostly valued for products of average quality, not for higher quality: bovine meat cuts (Loureiro and McCluskey, 2006), wines (Costanigro et al., 2007).
 • Easier for average consumers to access collective names. Knowledgeable consumers value more firm-specific names (Costanigro et al., 2012).
 Evidence from experimental literature (Guastafson, 2015) and industry practices.
 • Collective reputation plays a role when individual quality is not observable (Tirole, 1996, Saak, 2010)

• On the supply side, **heterogeneity matters**:
 • Producers differ in agro-climatic conditions or ability to provide quality (Zago, 2015). Evidence of free-riding problems within collective labels (Winfree and McCluskey, 2005; Fishman et al., 2015), and also in the literature of quality setting in cooperatives.
A simple setting

- **Consumers:**
 - Unit mass, and each one consumes at most one unit of product.
 - Preference $U = \theta s - p = s - p$, i.e., $\theta = 1$.
 - Homogeneous preferences for quality, but...
 - Heterogeneity in **awareness**: α can be informed of *individual* quality, while $1 - \alpha$ can only be informed about the *average* quality of the group.

- **Producers:**
 - Unit mass, and each provides at most one unit.
 - Heterogeneous in quality provision:
 - **H** commitment type: proportion β, produces quality δ at no cost;
 - **L** opportunistic type: proportion $1 - \beta$, produces $s \in [s_0, \delta)$ at cost $\Phi(s)$ ($\Phi' > 0, \Phi'' > 0$).
 - Other things equal, δ captures the degree of heterogeneity.
 - Different from other models, where typically one assumes $c_H < c_L$.
Firms’ **labeling strategies** and relative effects are the following:

1. **Individual brand** (*I*):
 - can inform **aware consumers**, α, about the **true quality** of a particular product;
 - w/out other labels, unaware consumers cannot be informed, so
 - **unaware** expect the **market average quality**, i.e., $\bar{s}_0 = \beta \delta + (1 - \beta) s_0$.

2. **Collective label** (*C*):
 - collective labels inform (aware & unaware) consumers on the group’s **average quality**;
 - the group decides on a **cahier des charges**, i.e., a quality standard $s_c \in [s_0, \delta]$;
 - the average perceived quality is $\bar{s}_c = \beta \delta + (1 - \beta) s_c$.
Name patterns in the market:

1 **Uniform Collective label (UC):**
 - If all producers adopt UC, the perceived quality is the region’s average quality: $\bar{s}_c = \beta \delta + (1 - \beta)s_c$, with $\delta > \bar{s}_c > s_c \geq s_0$.
 - **L-types** benefit from UC because of:
 1. the positive spillovers they get from H in **both** markets,
 2. the stricter quality standard enforced in the group.
 - **H-types** benefit because they can reach the unaware market.

2 **Nested names (C + I):**
 - H types may develop their individual brand on top of C:
 - **aware** consumers recognize true quality, i.e., δ for H and s_c for L,
 - **unaware** perceive only the average quality \bar{s}_c for all products.
 - the positive spillovers are confined to the **unaware** market.

3 **Separated labels (CL, I):**
 - L types in the group (CL), H types out (with I).
 - Collective label informs **ALL** consumers of the true quality s_c.
 - H types suffer negative spillovers in **unaware** market from being commingled from spot market, i.e., $\bar{s}_0 = \beta \delta + (1 - \beta)s_0$.
Other assumptions (heterogeneity & decisions):

- **Group’s decision rule**: simple majority rule.
 - *L* majority rule: assuming $\beta < \frac{1}{2}$, the quality scheme and quality level (s_c) is designed in the interest of the *L* type.

- **Timing** for decisions is the following:
 - **Stage 1**: Group (*L* majority) decides the **labeling scheme**, i.e., the scenario under which quality investments will be undertaken.
 - **Stage 2**: Group decides the **quality standard/ investment** s_c, i.e., it defines the **code of practice**.
 - **Stage 3**: Producers decide the **price** to be charged to consumers. Consumers decide whether to buy or not.

\[t = 1 \quad \underline{2} \quad 3 \]

- Labeling
- Quality
- Pricing
Perfect price discrimination, L’s majority rule

- With perfect PD \rightarrow **prices** charged up to max WTP for both aware and unaware consumers. \rightarrow Producers are **monopolists**.
- In the 2^{nd} stage, L-group chooses s_c (**quality standard**),
 - in each of the possible labeling schemes ("UC", "C + I", "C_L, I"),
 - taking into account that H can deviate from the chosen scheme.
- We start from the grand coalition with an available regional name.
- We assume NO collective deviation (coordination) and check for **unilateral deviations** in a case-by-case fashion.
- Best **outside option** for H is that in $C + I$, because in the unaware market she is confused with group, not the spot market, and $s_c \geq s_0$.
1: Uniform Collective label (UC)

- The problem for the L’s majority is (spillovers in whole market):

\[
\max_{s_c} \pi^\text{UC}_L(s_c) = \bar{s}_c - \Phi(s_c) = \beta \delta + (1 - \beta)s_c - \Phi(s_c)
\]

\[
\text{s.t. } \pi^\text{UC}_H(s_c) = \bar{s}_c \geq \pi^\text{C+1}_H(s_c) = \alpha \delta + (1 - \alpha)\bar{s}_c - f
\]

Lemma 1

With UC, the L-majority chooses the quality standard \(s^U \), which solves \((1 - \beta) = \Phi'(s_c)\), if and only if the following inequality holds:

\[
\delta < \hat{\delta} \equiv \frac{f}{\alpha(1 - \beta)} + s^U. \quad (1)
\]

Otherwise, the standard is set at \(\hat{s}^U(\delta, \alpha, \beta) = \delta - \frac{f}{\alpha(1 - \beta)} > s^U \).

- We first assume that eq. (1) holds and \(s_c = s^U \).
2: Collective label nested with individual brand \((C + I)\)

- Problem for \(L\) majority (spillover only in \textit{unaware} market):

\[
\max_{s_c} \pi^{C+I}_L(s_c) = \alpha s_c + (1 - \alpha) \bar{s}_c - \Phi(s_c)
\]

with \(\bar{s}_c = \beta \delta + (1 - \beta) s_c\).

- The participation constraint for \(H\) is trivially satisfied.

- Solution \(s^N\) solves:

\[
s^N : (1 - \beta + \alpha \beta) = \Phi'
\]
3: Collective label separated from Individual brand \((C_L, I)\)

- **No spillovers**: label formed only by \(L\) group \(\rightarrow\) true quality \(s_c\) revealed to all consumers. Problem for the \(L\) group is now:

\[
\max_{s_c} \pi_{C_L, I}^L(s_c) = s_c - \Phi(s_c)
\]

- The solution is \(s^*\):

\[
1 = \Phi'.
\]

- \(\Rightarrow\) Full information for \(L\) group, so that the *quality standard* achieves the first best (FB) level because *NO spillovers*.

- Separating from collective label, \(H\) cannot reach unaware consumers with its true quality. So it receives the price of the common lemon market \(\bar{s}_0\). \(\rightarrow\) \(\pi_{H, I}^{C_L} = \alpha \delta + (1 - \alpha) \bar{s}_0 - f\).
Result 1. Equilibrium in the **unconstrained** case

Proposition 1

Based on the L majority rule, if $\delta < \hat{\delta}$ (constraint (1) is NOT binding), we have

- $\pi^{UC}_L > \pi^N_L > \pi^*_L$.
- $\pi^N_H > \pi^C_H > \pi^{CL, I}_H$.
- $s^U < s^N < s^*$.

Therefore,

- The quality standard is lowest under UC, highest with separate names.
- The L group will choose the Collective label.
- The H type would be strictly better off under nested names.
Choice of labeling scheme

LQ’s profits

UC - Full spillovers

\[\Phi' \]

\[\beta \]

\[1 \]

\[1 - \beta + \alpha \beta \]

\[1 - \beta \]

\[1/2 \]

\[\beta \]

\[0 \]

\[UC \]

\[C + I \]

\[C_L, I \]

\[\delta \]

\[s^U \]

\[s^N \]

\[s^* \]
Nested - Partial spillovers

\[\Phi' = \frac{1}{\beta} \left(1 - \beta + \alpha \beta \right) \]

\[0 \leq \beta \leq 1 \]

\[0 \leq s \leq \delta \]

\[UC, C + I, C_L, I, s^U, s^N, s^* \]
Choice of labeling scheme

LQ’s profits

Separated - No spillovers

\[\Phi' \]

\[\beta \]

\[1 \]

\[1 - \beta + \alpha \beta \]

\[1 - \beta \]

\[1/2 \]

\[\beta \]

\[0 \]

\[UC \]

\[C + I \]

\[C_L, I \]

\[\delta \]

\[s^U \]

\[s^N \]

\[s^* \]

J. Yu, Z. Bouamra, and A. Zago

What’s in a (nested) name?

AAWE 2016 - Bordeaux
Result II. Constrained problem: “UC” or Nested?

Proposition 2

Under L majority rule and perfect PD, the L producer group trades-off between the uniform collective label and the nested names. There exists δ^{NU}, which solves $\pi^U_L(\hat{s}^U(\delta, \alpha, \beta)) = \pi^N_L$ for δ, such that $\delta^{NU} > \hat{\delta}$

- if $\delta < \hat{\delta}$, uniform collective label is adopted with the standard $s_c = s^U$.
- if $\hat{\delta} < \delta < \delta^{NU}$, uniform collective label is adopted with the standard $\hat{s}^U > s^U$.
- if $\delta^{NU} < \delta$, the nested names are chosen with standard s^N, with $s^N < \hat{s}^U$.
Equilibrium labeling schemes

Equilibrium labeling schemes

Nested “C_{L+I}” (S^N)

High heterogeneity

Constrained “UC” (\hat{S}^\hat{U})

Medium heterogeneity

Unconstrained “UC” (S^U)

Low heterogeneity

Information

\(\delta \)

\(\delta_{NU} \)

Heterogeneity of firms

J. Yu, Z. Bouamra, and A. Zago

What’s in a (nested) name?

AAWE 2016 - Bordeaux
Interesting insights

- Intuition. *UC* enables *L* types to benefit from max spillovers. However, sometimes *L*’s majority may need to balance interests of *H* types as well, either by increasing s_c or allowing nested labels. When
 - producer heterogeneity is high (δ is large), it is too costly for *L*’s majority to increase quality to keep *H* in the group; and/or
 - there are more informed consumers (α is large), there are lower incentives for *H* to stay in the group (fewer unaware), but then *L* may have lower incentives to produce quality,

then the *L*’s group switches to nested labeling.

⇒ Nested names when \uparrow heterogeneity and/or consumers’ awareness.

- In the literature, differentiation to attract consumers with heterogeneous tastes or to soften competition. Here, no heterogeneity in preferences and no competition ⇒ labeling differentiation to balance divergent interests within the group.

- Notice however that nested names may reduce welfare.
Result III. Welfare analysis: Better Collective or Nested?

Proposition 3

The choice of the L’s majority can be welfare deteriorating or welfare enhancing.

There exists \(\delta^W \), which solves \(W^{UC}(\hat{s}^U(\delta, \alpha, \beta)) = W^{C+I}(s^N) \), such that \(\delta^W < \delta^{NU} \) and:

- if \(\delta < \delta^W \), \(L \) chooses “\(UC \)”, entailing a lower welfare than the nested label, i.e., \(W^{UC} < W^{C+I} \);
- if \(\delta^W \leq \delta < \delta^{NU} \), \(L \) chooses “\(UC \)”, resulting in a higher welfare level than the nested labels, i.e., \(W^{UC} > W^{C+I} \);
- if \(\delta \geq \delta^{NU} \), then \(L \) chooses “\(C + I \)”, entailing a lower welfare than the uniform labels, i.e., \(W^{C+I} < W^{UC} \) (constrained).
Welfare analysis
Better Collective or Nested?

What's in a (nested) name?

Nested "C_l+I" (s^N)

W_{UC} > W^N

Constrained "UC" (s^U)

W_{UC} < W^N

Unconstrained "UC" (s^U)
1. Nested names enable H types to differentiate themselves. Usually, this is good. However, quality incentives for the opportunistic types depend on 2 mechanisms:
 - spillovers: \downarrow with nested, $\rightarrow \uparrow s_c$ and $s^N > s^U$;
 - desire to retain H in the group (PC): with constrained UC, $s^U > s^N$.
 When this latter effect dominates, UC welfare dominates nested names.

2. In the literature, better informed consumers may induce higher quality incentives for firms.
 Here, more aware consumers with possible negative externality effect: (Δ of labeling choice) \rightarrow switch to nested names \rightarrow possible welfare reduction.
What if **PD is NOT doable?**

- Trade-off in the pricing stage, when choosing between serving
 - the whole market at low price, or
 - part of the market at higher price.
- For the H type, with nested names trade-off between
 - targeting only aware consumers (α) at a high price δ with I, or
 - targeting the entire market at a lower (average) price \bar{s} (\bar{s}_c with $C + I$ or \bar{s}_0 with C_L, I).
- For the L type, trade-off between
 - targeting only unaware consumers $(1 - \alpha)$ at an average price \bar{s}_c with nested names, or
 - targeting the entire market at a lower price reflecting its true quality s_c.
Result IV. Equilibrium labeling scheme w/out PD
Robustness checks

- We have used a simple majority’s rule, when in reality there may be other decision rules which may depend on the political power of producers with different interests. As long as L producers have the dominant power, our results will be unchanged.

- H types could be the majority of producers in a region. They would form a group C_H, setting a standard $s_c = \delta$, informing ALL consumers. However, such a situation is less common (and interesting).

- Another is the case of sub-group collective label(s) nested within the grand collective label, i.e., $C + C_H$. The most terroir-oriented is Burgundy, imitated elsewhere in the world. Analysis is easily extended and similar to $C + I$, since L can still benefit from H in the unaware market, thanks to the common C.
Concluding remarks

• We rationalize the existence of collective labels and nested names, arguing that they could provide differential information to consumers.

• We take into account producers’ heterogeneity, to explain choices.

• We can then explain the emergence of different labeling schemes: from collective labels to nested names, depending on producers’ heterogeneity and consumers’ awareness.

• For industry, easy “prediction”:
 • stick together in unknown markets,
 • differentiate in knowledgeable markets.

• Policy recommendations trickier: nested names accommodate heterogeneity, but may lead to a decrease in quality and welfare.

• Further work, extensions by relaxing simplifying assumptions.